Two-step estimation of panel data models with censored endogenous variables and selection bias

نویسندگان

  • Francis Vella
  • Marno Verbeek
چکیده

This paper presents some two-step estimators for a wide range of parametric panel data models with censored endogenous variables and sample selection bias. Our approach is to derive estimates of the unobserved heterogeneity responsible for the endogeneity/selection bias to include as additional explanatory variables in the primary equation. These are obtained through a decomposition of the reduced form residuals. The panel nature of the data allows adjustment, and testing, for two forms of endogeneity and/or sample selection bias. Furthermore, it incorporates roles for dynamics and state dependence in the reduced form. Finally, we provide an empirical illustration which features our procedure and highlights the ability to test several of the underlying assumptions. ( 1999 Elsevier Science S.A. All rights reserved. JEL classification: C23; C33; C34

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Panel Data Models in the Presence of Endogeneity and Selection

We consider estimation of panel data models with sample selection when the equation of interest contains endogenous explanatory variables as well as unobserved heterogeneity. We offer a detailed analysis of the pooled two-stage least squares (pooled 2SLS) and fixed effects-2SLS (FE-2SLS) estimators and discuss complications in correcting for selection biases that arise when instruments are corr...

متن کامل

On Estimation Following Selection with Applications on k-Records and Censored Data

Let X1 and X2 be two independent random variables from gamma populations Pi1,P2 with means alphaθ1 and alphaθ2 respectively, where alpha(> 0) is the common known shape parameter and θ1 and θ2 are scale parameters. Let X(1) ≤ X(2) denote the order statistics ofX1 and X2. Suppose that the population corresponding to the largest X(2) (or the smallest X(1)) observation is selected. The problem ofin...

متن کامل

Estimation of Censored Linear Errors-in-Variables Models∗

This paper deals with a linear errors-in-variables model where the dependent variable is censored. A two-step procedure is proposed to derive the moment estimator of the model and the corresponding asymptotic covariance matrix. The results cover the moment estimation of the usual (error-free) Tobit model as a special case. It is shown that, under normality and a certain identifying condition, t...

متن کامل

A New Model Selection Test with Application to the Censored Data of Carbon Nanotubes Coating

Model selection of nano and micro droplet spreading can be widely used to predict and optimize of different coating processes such as ink jet printing, spray painting and plasma spraying. The idea of model selection is beginning with a set of data and rival models to choice the best one. The decision making on this set is an important question in statistical inference. Some tests and criteria a...

متن کامل

Bias Corrections for Two-Step Fixed Effects Panel Data Estimators

This paper introduces bias-corrected estimators for nonlinear panel data models with both time invariant and time varying heterogeneity. These models include systems of equations with limited dependent variables and unobserved individual effects, and sample selection models with unobserved individual effects. Our two-step approach first estimates the reduced form by fixed effects procedures to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996